Objective Questions on Laplace Transform
Objective Questions on Laplace Transform, The Laplace Transform – MCQ Test | 20 Questions MCQ Test, Laplace Transform question and answer, MCQs of Laplace Transform and Inverse Laplace, Laplace Transform – MCQs with answers, Laplace Transform MCQ Questions with Answer, Gate Objectives on Laplace Transform, Engineering MCQ, Network Analysis MCQ
Multiple Choice Questions
- Laplace transform of a unit impulse function is
- S
- 0
- e-s
- 1
Answer: 1
2. Laplace transforms of a damped sine wave e−αt sin (θt) · u(t) is
- \frac{1}{(s+\alpha )^{2}+\phi ^{2}}
- \frac{s}{(s+\alpha )^{2}+\phi ^{2}}
- \frac{\phi ^{2}}{(s+\alpha )^{2}+\phi ^{2}}
- \frac{\phi}{(s+\alpha )^{2}+\phi ^{2}}
Answer: \frac{\phi ^{2}}{(s+\alpha )^{2}+\phi ^{2}}
3. The final value of f(t) for a given F(s)=\frac{s}{(s+4)(s+2)}
- Zero
- 1/15
- 1/8
- 1/6
Answer: Zero
4. Laplace transforms of the function e−2t is
- \frac{1}{2s}
- (s + 2)
- \frac{1}{s+2}
- 2s
Answer: \frac{1}{s+2}
5. The Laplace transform of a function is \frac{1}{s}Ee^{-as}. The function is
- E sin ωt
- Eeat
- Eu(t − a)
- E cos ωt
Answer: Eu(t − a)
6. If f(t) = r(t − α), f (s) =
- \frac{e^{-as}}{s^{2}}
- \frac{\alpha }{s+\alpha }
- \frac{1}{s+\alpha }
- \frac{e^{-as}}{s}
Answer: \frac{e^{-as}}{s^{2}}
7. The integral of a step function is
- A ramp function
- An impulse function
- Modified ramp function
- A sinusoidal function
Answer: A ramp function
8. Laplace transform of the function f (t) = (1 − e−αt) sin αt, where α is a constant is
- \frac{s}{s^{2}+\alpha ^{2}}-\frac{s+\alpha }{(s+\alpha )^{2}+\alpha ^{2}}
- \frac{1}{s^{2}+\alpha ^{2}}-\frac{\alpha }{(s+\alpha )^{2}+\alpha ^{2}}
- \frac{\alpha }{s^{2}+\alpha ^{2}}-\frac{\alpha }{(s+\alpha )^{2}+\alpha ^{2}}
- None of the above
Answer: \frac{\alpha }{s^{2}+\alpha ^{2}}-\frac{\alpha }{(s+\alpha )^{2}+\alpha ^{2}}
9. Laplace inverse equation \frac{1}{(s+2)(s+3)} is
(a)e−t − e−2t
(b)e− e−2t
(c)e− e2t
(d)NOT
10. Laplace transform equation tn eat is
- \frac{n!}{s^{n+1}}
- \frac{n!}{s^{n-1}}
- \frac{n!}{(s-a)^{n-1}}
- \frac{n!}{(s-a)^{n+1}}
Answer: \frac{n!}{(s-a)^{n-1}}
11. Inverse Laplace transform for \frac{2s+3}{s^{2}+3s} is
- 1 − e−3t
- 1 + e−3t
- 1 + e3t
- 1 − e 3t
Answer: 1 + e−3t
12. Inverse Laplace transform for \frac{3s^{2}+4}{s(s^{2}+4)} is
- 1 + cos 2t
- 1 + 3cos 2t
- 1 + 2cos 2t
- 1 + 3cos t
Answer: 1 + 2cos 2t
13. Inverse Laplace transform for \frac{6s}{(s+1)(s+2)(s+4)} is
- -2e−t + 6 e−2t + 4e−4t
- -2e−t + 6 e−2t − 4e−4t
- −2e−t + 6e2t + 4e−4t
- −2e−t + 6e−2t + 4e4t
Answer: -2e−t + 6 e−2t − 4e−4t
14. The value of function f(s)=\frac{4(s+25)}{s(s+10)} at t = 0 is
- 10
- 4
- 0
- ∞
Answer: 4
15. Laplace transforms of tn u(t) is
- \frac{n!}{s^{n}}
- \frac{n!}{s^{n-1}}
- \frac{(n-1)!}{s^{n-1}}
- \frac{n!}{s^{n+1}}
Answer: \frac{n!}{s^{n+1}}
16. The final value of the function I(s)=\frac{s+6}{s(s+3)} is
- 0
- 1
- 2
- 3
Answer: 2
17. If I(s)=\frac{3s}{(s+1)(s+4)}, then i(t) is
- e−t + 4e-4t
- e−t + 4e4t
- −e−t + 4e−4t
- −e−t − 4e−4t
Answer: −e−t + 4e−4t
18. Laplace transform of t sin 2t is
- \frac{4s}{(s^{2}+4)^{2}}
- \frac{s}{(s^{2}+4)^{2}}
- \frac{4s}{s^{2}+4}
- \frac{4s}{(s^{2}+4)^{3}}
Answer: \frac{4s}{(s^{2}+4)^{2}}
19. If f1(t) = e −at and f2(t) = t, then convolution of f1(t) and f2(t) is
- \frac{e^{at}}{a^{2}}\left [ ate^{at}+e^{at}+1 \right ]
- \frac{e^{-at}}{a^{2}}\left [ ate^{-at}-e^{at}+1 \right ]
- \frac{e^{-at}}{a^{2}}\left [ ate^{at}-e^{at}+1 \right ]
- \frac{e^{-at}}{a^{2}}\left [ ate^{at}-e^{at}-1 \right ]
Answer: \frac{e^{-at}}{a^{2}}\left [ ate^{at}-e^{at}+1 \right ]
20. The Laplace transform of t cos 4t is
- \frac{s^{2}-16}{(s^{2}+16)^{2}}
- \frac{s^{2}+16}{(s^{2}+16)^{2}}
- \frac{s^{2}}{(s^{2}+16)^{2}}
- None of the above
Answer: \frac{s^{2}-16}{(s^{2}+16)^{2}}
Relate Posts: